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1 INTRODUCTION AND BACKGROUND
1.1 Problem
Recommendation systems play a pivotal role in
providing personalized content to users in the digital
media landscape. However, the increasing volume
and variety of available content present challenges for
these systems in terms of maintaining high prediction
accuracy and user satisfaction. Our project aims to
tackle the issue of enhancing a movie
recommendation system by incorporating additional
metadata from external sources, such as IMDB, and
integrating deep learning techniques. We will explore
whether these advanced methods can yield more
accurate predictions and better user satisfaction
across various domains than traditional techniques.

1.2 Related Work
The Netflix Prize competition in 2006 sparked a surge
of research in media recommendation systems as
platforms, users, and content options continued to
expand. The competition's dataset, containing over
100 million movie ratings from 480 thousand
anonymized Netflix subscribers for more than 17
thousand movie titles, promoted this growth due to its
accessibility, size, diversity, real-world relevance, and
the extensive literature surrounding it [8].

The winning algorithm, developed by the collaborative
team BellKor's Pragmatic Chaos, combined Matrix
Factorization techniques and ensemble models to
improve prediction accuracy, integrating collaborative
filtering methods, temporal effects, and probe
blending[7]. This groundbreaking approach not only
won the competition but also set the stage for future
research on recommendation systems by
demonstrating the effectiveness of combining different
techniques and incorporating additional data.

Subsequent research has applied deep learning
techniques like Restricted Boltzmann Machines
(RBMs) [1] and Autoencoders [6] to collaborative
filtering problems, yielding competitive results in
movie recommendation tasks. These works
contributed to expanding the range of methods used

in recommendation systems and showed the potential
of deep learning in improving prediction accuracy.

Researchers have since explored web scraping for
gathering additional data to enhance recommendation
systems. In particular, incorporating external movie
metadata into matrix factorization models to improve
recommendation performance has been a promising
avenue of research. This line of research has
demonstrated the value of external data sources in
boosting the performance of recommendation
systems, broadening the possibilities for future
improvements [5].

The Netflix Prize significantly impacted collaborative
filtering research, fostering idea exchange and the
development of more effective algorithms. As media
platforms continue to expand, the need for efficient
and accurate recommendation systems will become
increasingly critical, emphasizing the importance of
ongoing research and innovation in this domain.

Matrix factorization techniques proved instrumental in
developing efficient algorithms for the competition.
These techniques enabled quick training and
prediction generation while incorporating additional
data signals and views. Alongside matrix factorization,
RBMs also showed promise in collaborative filtering
when combined with K-Nearest Neighbors (KNN)
models [4].

The competition uncovered various data effects,
including binary information (considering non-random
movie selection for rating), temporal effects (impacting
short and long-term ratings), and the importance of
blending algorithms. By the competition's end, the
winning team utilized an ensemble of blends,
leveraging diverse sets of predictors and blending
methods to optimize prediction accuracy [7].

2 METHOD
2.1 Novel Aspects

Our Project explores the novel aspects of combining
web scraped metadata with deep learning techniques
in order to improve movie recommendations.

https://www.zotero.org/google-docs/?Z42HoB
https://www.zotero.org/google-docs/?qusk60
https://www.zotero.org/google-docs/?QsUZSl
https://www.zotero.org/google-docs/?lygVTP
https://www.zotero.org/google-docs/?qtCuck
https://www.zotero.org/google-docs/?nLXgFB
https://www.zotero.org/google-docs/?syKCiE
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The first novel aspect of our project involves collecting
a novel dataset. By using web scraping, we can
gather additional movie information from IMDB, which
will be combined with the Netflix dataset. This
integration will create a richer dataset that could
potentially boost the performance of our
recommendation system. As shown in the Paper “The
Unreasonable Effectiveness of Data” large corpora of
data are extremely important for effective machine
learning models [2].

This data is used to train our Hybrid Deep
Recommendation System which is the second novel
aspect of our project. What makes this network hybrid
is that it incorporates both collaborative filtering and
content-based methods. By using deep learning
techniques and combining them with the additional
scraped features, our project goes beyond the
traditional recommendation systems used for the
Netflix Prize Competition to potentially deliver more
accurate and personalized movie recommendations.

2.2 Approach
Our approach involves implementing a Hybrid Deep
Recommendation System that combines collaborative
filtering and content-based methods. Additionally, we
utilized web scraped metadata from IMBD in an
attempt to enhance the predictions of the model.
What follows is a general description of the
techniques and final systems implemented in this
project.

First, we will collect the necessary data and perform
preprocessing. This involves obtaining the Netflix
Prize dataset used for the 2009 Netflix Prize
competition which includes user ratings, movie titles,
and related information. Then we will scrape
additional metadata from IMDB using web scraping
techniques, with Python libraries like Requests-HTML.
Both datasets will be cleaned and preprocessed to
ensure the data is free from inconsistencies and that
missing values are normalized. The Netflix movie ids
and IMDB dataset will be merged based on the movie
titles, creating a unified dataset for analysis.

For feature engineering, we will create new features
based on the additional metadata gathered from
IMDB. Examples include movie genres, directors,
actors, runtime, descriptions, and IMDB ratings. The
data will then be encoded to ensure compatibility with
machine learning algorithms. For example, the
description feature will be encoded using tf-idf, an
algorithm that uses the frequency of words to

determine how relevant those words are in a
document.

The

The Hybrid Deep Recommendation System model will
consist of two parts. The first is a collaborative filtering
that uses deep learning techniques, such as matrix
factorization with neural networks. This allows the
model to recommend based on what other users have
liked. The second is a content-based model using
deep learning techniques, like neural networks, to
learn features from the movie metadata. These two
systems will be combined by concatenating both
parts, followed by one or more dense layers, and
finally, a regression output layer to predict user
ratings.

To train and evaluate the network, we will split the
datasets into training and testing sets. Additionally, a
deep collaborative filtering model will be trained and
evaluated using solely the Netflix dataset with no
additional metadata. These two systems will be
evaluated based on performance and compared
against the winning algorithm developed by BellKor's
Pragmatic Chaos from the Netflix Prize competition.

2.3 Rationale
We chose to implement a hybrid deep
recommendation system as it combines the strengths
of both collaborative filtering and content-based
methods. In our case, collaborative filtering offers
personalized recommendations based on other users’
historical preferences, while content-based methods
consider movie features to provide recommendations
similar to a user’s past interests based on movie
metadata.

We opted to use deep learning techniques such as
neural networks with hidden layers, due to their ability
to capture complex patterns and nonlinear
relationships in the data. Other potential approaches,
such as using linear regression, ridge regression, and
lasso regression were not considered due to their
limited ability to capture these patterns.

We chose to concatenate the output layers of the
collaborative filtering and content-based models in our
hybrid system. Alternative approaches, such as
blending or stacking, were not pursued as they might
not fully leverage the combined strengths of both
models.

We chose to use the Python Requests-HTML library
to aid in web scraping as it offered a relatively simple

https://www.zotero.org/google-docs/?QzpwYT
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and efficient way to gather additional movie
information from IMDB.

3 PLAN & EXPERIMENT
3.1 Datasets
The Netflix prize dataset is a well-known dataset used
for the purpose of predicting user ratings for movies.
The dataset was released in 2006, as part of a
competition to improve the accuracy of their movie
recommendation system. The dataset contains “over
100 million ratings from 480 thousand randomly
chosen, anonymous Netflix customers over 17
thousand movie titles” [8]. The ratings are presented
as integers, one to five. Our reasons for choosing this
dataset are that it is publicly available, large and
diverse, tackles real-world problems, and has a large
literature backing.

The Internet Movie Database (IMDB) is a
comprehensive online repository of information
related to movies, television shows, actors, directors,
and more. To further enhance the Netflix prize
dataset, we decided to web scrape IMDB for
additional metadata about the movies present in the
Netflix dataset, such as movie genres, directors,
actors, runtime, and descriptions. By incorporating
this supplementary dataset, we aim to create a richer,
more informative dataset that allows us to leverage
the power of content-based methods in our Hybrid
Deep Recommendation System. We hope that this
additional information can potentially improve the
prediction ability of our model.

3.2 Hypotheses
In this project, we will address the following main
questions:

1) Can Hybrid Deep Recommendation Systems with
additional metadata scraped from IMDB and Matrix
Factorization with dense layers improve on the RMSE
compared to the 2009 Netflix Prize-winning
algorithm?

2) How does the accuracy of Deep Recommendation
Systems with and without the additional metadata
from IMDB compare, and does this supplementary
information lower the validation error when predicting
user movie ratings?

3) Can web scraping data from websites with similar
information, such as IMDB, effectively enhance the

prediction ability of recommendation models and
demonstrate the advantage of incorporating additional
training data in improving a model's performance?

By investigating these hypotheses, we aim to
evaluate the potential of using web scraping to gather
additional movie information from IMDB, and whether
training a Hybrid Deep Recommendation System with
this supplementary data can outperform a classical
prediction model in terms of prediction accuracy. This
research will provide valuable insights into the
importance of additional training data and the
potential superiority of neural networks over classical
prediction models when utilizing such additional data.

3.3 Experimental Design
To answer the main questions outlined in our
hypotheses, we conducted a series of experiments
using our Hybrid Deep Recommendation System and
compared its performance to traditional approaches,
such as BellKor's Pragmatic Chaos (the winning
Netflix algorithm) from 2009, which is approximately
15 years old [7].

Before conducting the experiments, we preprocessed
the User-Data portion of the Netflix Prize dataset to
extract all ratings and form a matrix. The file structure,
a mix of JSON and CSV formats, necessitated
additional cleaning and formatting. We only loaded
one out of four of the User-Data files to decrease
training times and ensure we could fit all the data in
memory. We further filtered the user data by selecting
the top one percent of users with the most ratings to
drastically reduce training times and prevent Compute
Unified Device Architecture (CUDA), out-of-memory
errors. Finally, we shuffled the filtered dataset with a
fixed random state of 42 and split it into a training set
(80%) and a test set (20%) to evaluate the
recommendation system's performance. When
training on the machine learning models, the date
column was dropped.

Next, we performed processing on the Movie Titles
with metadata by dropping all movies that did not
have any IMDB data. Next, we filled in missing values
for the year, rating, duration, and aggregate average
rating with the mean and the content rating with the
mode. The genre, actors, directors, creators,
keywords, and description fields were split into lists if
they contained multiple entries and filled with an
empty string if there was a missing value. Finally, we
encoded the content rating using a label encoder, the

https://www.zotero.org/google-docs/?fX8W5O
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genre, actors, directors, and creators using a
multi-label binarizer, and the keywords and
description columns using a tfidf vectorizer. For the
multi-label binarizer, we only kept features that had at
least 100 instances and limited the tfidf vectorizer to
500 features.

For both neural networks, we used a training loop that
would save the model checkpoint when the validation
accuracy improved and would stop training when the
validation increased five times in a row. We mounted
a FUSE filesystem that was connected to the cloud to
ensure that results were not lost if the machine was
terminated and that we could resume training from the
last checkpoint if needed. A checkpoint was taken
every 5 epochs. We used mean squared error (MSE)
as our loss function during training and root mean
squared error (RMSE) to compare models. The Adam
optimizer was utilized with a learning rate of 0.003. An
embedding size of 500 and a batch size of 4096 were
used for both networks.

For our first neural network, we used Matrix
Factorization with hidden layers. This is the model
that does not use the additional training data. The
user and movie data were embedded with an
embedding size of 500. Next, we took the dot product
of the embedded movie and user vector and
concatenated that output with the user and movie
vector. After that, we used five hidden layers with our
first layer having a feature size of 2 times the
embedding size plus 1 and outputting 256 neurons.
The following layers had outputs of 128, 64, 32, and 1
respectively. After each layer besides the output layer,
the rectified linear unit (ReLU) activation function was
applied and a dropout of 0.2 was used. The output
was flattened and returned.

Our second neural network, the Hybrid Deep
Recommendation System, used the same design as
the first neural network with the addition of movie
metadata. This metadata was put through a linear
layer with ReLU activation whose input was the
number of metadata features and output was the
embedding size of 500. Next, the user vector and
metadata vector were multiplied together and
concatenated with the user-movie vector, user vector,
and movie vector before going through the same
hidden layers as the previous neural network.

For the experiments, we designed a Hybrid Deep
recommendation system neural network, which
combined embedding layers for users and movies
with fully connected layers for processing the TF-IDF

vectors. Grid search with cross-validation was used
for hyperparameter tuning, optimizing the model's
performance by training it on different combinations of
hyperparameters and selecting the combination that
yielded the best performance on the validation set.
Some of the hyperparameters tuned included learning
rate, batch size, and the size of the embedding.

To answer our first, second, and third question, we
trained the Hybrid Deep Recommendation System to
converge with the hyperparameters and
preprocessing techniques discussed above and
reported the root mean square error (RMSE).

To answer questions two and three, we also trained
and evaluated our baseline algorithm, the winning
Netflix algorithm, using the same preprocessed
dataset used to train the machine learning models.
The hyperparameters used for this were a sample
size of 1000 and an iteration count of 700.

To be able to thoroughly answer our second question,
we trained the matrix factorization model with hidden
layers to convergence and reported the root mean
square error (RMSE). Then we will compare the
results from both deep learning models.

To compare the Hybrid Deep Recommendation
System's effectiveness, we benchmarked it against
BellKor’s Pragmatic Chaos algorithm, which was the
Netflix Prize-winning algorithm in 2009. This allowed
us to assess the deep learning-based model's
performance in the context of established methods.

During the course of our experiments, we
encountered several challenges. The main difficulties
were managing the large volume of data and fitting it
into GPU memory, ensuring reliable and consistent
scraping of additional metadata, determining the most
effective way to combine the collaborative filtering and
content-based information, using a suitable computing
machine that had an adequate GPU with a good
amount of GPU memory. The GPU used for these
tests was the NVIDIA GeForce RTX 2080 Ti which
had 11 GBs of memory.

To overcome these difficulties, we employed the
following solutions:

Data Management and GPU Memory Limitations: We
scaled down the size of the User-data to only use
0.0025 of the corpus size. This allowed us to iterate
on our models much faster and not have to deal with
CUDA out-of-memory errors. We explored using
sparse tensors for the scrapped metadata at first as
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we weren’t limiting the number of features produced
by tfidf vectorization and the multilabel binarizer but
ultimately decided to limit features instead.

Reliable Web Scraping: To ensure consistency in the
scraped data, we implemented error handling in the
web scraping program and also dropped all movies
that did not contain scraped metadata.

Combining the IMDB metadata in the neural network:
We experimented with different techniques for
combining the collaborative filtering and
content-based information, such as concatenation,
blending, and stacking, and ultimately chose to
concatenate to preserve as much data as possible.

4 RESULTS
Below are the RMSE scores for the machine learning
algorithm and baseline one using the winning
algorithm compared to the machine learning ones.

Bellkor Algorithm RMSE: 0.768156400414371

Machine Learning Algorithms:
Matrix Factorization with Hidden Layers RMSE:
0.6118078618023489
Deep Hybrid System RMSE: 0.5269750458848950

Figure 1: Root mean squared error (RMSE) for
baseline and machine learning models
4.2 Discussion

The experimental results provide answers to the
research questions posed.

The Hybrid Deep Recommendation Systems with
additional metadata scraped from IMDB and Matrix
Factorization with dense layers significantly improved
the RMSE compared to the 2009 Netflix Prize-winning

Bellkor Algorithm. The Bellkor Algorithm had an
RMSE of 0.768156400414371, while the Matrix
Factorization with Hidden Layers model had an
RMSE of 0.6118078618023489, and the Deep Hybrid
System had an even lower RMSE of
0.5269750458848950. These results demonstrate
that incorporating additional metadata and leveraging
deep learning techniques can enhance
recommendation system performance.

The Deep Hybrid System, which utilized additional
metadata from IMDB, outperformed the Matrix
Factorization with Hidden Layers model without the
supplementary information. This indicates that
incorporating external metadata into the model can
effectively lower the validation error when predicting
user movie ratings. The difference in RMSE between
the two models suggests that the additional IMDB
data contributed to the improved performance of the
Deep Hybrid System.

The results show that web scraping data from
websites with similar information, such as IMDB, can
effectively enhance the prediction ability of
recommendation models. In this case, the Deep
Hybrid System, which incorporated additional IMDB
data, demonstrated a clear advantage over the Matrix
Factorization with Hidden Layers model in terms of
RMSE. This supports the notion that incorporating
additional training data can improve a model's
performance, confirming the findings from prior works.

Although the experimental results provide definitive
answers to the research questions, there are several
potential areas for further investigation. For example,
it would be valuable to explore the impact of different
sources of external metadata on the performance of
recommendation systems. Additionally, experimenting
with other deep learning techniques, such as RBMs
and Autoencoders, could yield more insights into the
potential improvements that can be achieved in
recommendation systems. Finally, a more extensive
comparison of various blending methods and
ensemble techniques could help identify optimal
strategies for enhancing prediction accuracy.

5 CONCLUSIONS
Throughout this project, several valuable lessons
were learned, spanning various aspects of machine
learning, data processing, and model optimization.
Key takeaways include how to scrape metadata using
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Requests-HTML, clean and merge messy data, and
build neural network architecture and training
pipelines. Additionally, this project provided
experience in setting up a machine with the required
libraries and packages for machine learning, building
a neural network that incorporates metadata and
understanding the workings of embedding vectors.
The project also highlighted the differences between
sparse and dense tensors, the importance of limiting
the number of features when using tfidf vectorization
and multi-label binarizer, and how to prepare data for
machine learning. Lastly, the importance of a test set
for optimizing hyperparameters and the superiority of
the Adam optimizer over SGD were demonstrated, as
well as the significance of regularization on dense
layers.

Due to time constraints, several ideas were not
pursued during this project. These include using
sparse tensors to save memory for movie metadata
information, using standard deviation or min-max
scaling for movie metadata preprocessing when filling
in missing values, training with a larger percentage of
the dataset, and performing hyperparameter sweeps
on various aspects of the models. Precomputing the
movie portion of the neural network for faster
inference times also remains unexplored.

An essential aspect to consider when implementing
recommendation systems in real-world applications is
the tradeoff between inference times for the Bellkor
Algorithm and neural networks. The Bellkor Algorithm
relies on a technique similar to Singular Value
Decomposition (SVD), which can be computationally
expensive. Neural networks, on the other hand, can
be more efficient in terms of inference time, although
training them may require more computational
resources. This tradeoff must be weighed carefully in
terms of real-world feasibility.

Additionally, scalability is a crucial factor to consider
when deploying machine learning models in
real-world applications, particularly in the context of
large datasets like the Netflix Prize corpus. Training
models on such large datasets often necessitates the
use of GPUs with substantial memory, as they can
significantly accelerate the training process. However,
this dependency on powerful GPUs may present
challenges in terms of accessibility, cost, and power
consumption, particularly for smaller organizations or
individuals with limited resources. Additionally, as the
size of the dataset increases, the memory
requirements for the model and the intermediate

computations can become a bottleneck, potentially
leading to longer training times and difficulties in
model optimization. Therefore, future work should
explore techniques to mitigate these potential
scalability issues, such as distributed training, model
compression, and memory-efficient representations
for both input data and model parameters. Addressing
these scalability concerns will be essential for
ensuring the practical applicability of advanced
recommendation systems in various settings and
maximizing their potential impact.

Moreover, the Hybrid Model's ability to incorporate
additional metadata could help address the cold-start
problem often encountered in recommendation
systems. By leveraging metadata to enrich the model,
the Hybrid Model can generate more accurate
recommendations for new users or items with limited
rating history, improving the overall user experience
on media platforms.

In conclusion, this study has demonstrated that
Hybrid Deep Recommendation Systems with
additional metadata and Matrix Factorization with
dense layers can significantly improve prediction
accuracy compared to the Netflix Prize-winning
Bellkor Algorithm. The incorporation of external
metadata, such as IMDB data, has been shown to
enhance prediction ability and lower the validation
error in predicting user movie ratings. Moreover, the
lessons learned and ideas not pursued due to time
constraints highlight potential avenues for further
research and optimization in the field of media
recommendation systems. Overall, this project
contributes to the ongoing efforts to develop efficient
and accurate recommendation systems as media
platforms continue to expand, emphasizing the
importance of innovation and the incorporation of
additional data sources.
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APPENDIX 2. GITHUB REPO
Below is the link to our GitHub repository with
information on how to set up and evaluate our
models. setup_vlc.txt is the best way to get started on
a GPU machine (highly recommended). Our model
data was too large to upload on GitHub but there is a
file in the prize_dataset folder called
download_data.sh that will download it to the correct
location on your machine. All model setup, training,
and inference is located in the deep_learning.ipynb
file inside the deep-learning folder. The given
gdfuse-config file will work for any ncsu.edu google

account to attach your Google Drive to the filesystem.
After signing in with the link given you can copy and
paste the code from the redirection URL.

GitHub Repository:
https://github.com/PostsDesert/CSC-422-Netflix-Reco
mmendations-Web-Scrapping-Ensemble-Models/tree/
main
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